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Synopsis. The formation of ocular dominance and orientation columns in 
the mammalian visual cortex is briefly reviewed. Correlation-based models 
for their development are then discussed, beginning with the models of Von 
der Malsburg. For the case of semilinear models, model behavior is well un­
derstood: correlations determine receptive field structure, intracortical in­
teractions determine projective field structure, and the "knitting together" 
of the two determines the cortical map. This provides a basis for simple but 
powerful models of ocular dominance and orientation column formation: 
ocular dominance columns form through a correlation-based competition 
between left-eye and right-eye inputs, while orientation columns can form 
through a competition between ON-center and OFF-center inputs. These 
models account well for receptive field structure but are not completely 
adequate to account for the details of cortical map structure. Alternative 
approaches to map structure, including the self-organizing feature map of 
Kohonen, are discussed. Finally, theories of the computational function of 
correlation-based and self-organizing rules are discussed. 

2.1 Introduction 

The brain is a learning machine. An animal's experience shapes the neu­
ral activity of its brain; this activity in turn modifies the brain, so that 
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Right eye Visual Cortex 
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Fig. 2.1. Schematic of the mature visual system. Retinal ganglion cells from 
the two eyes project to separate layers of the lateral geniculate nucleus (LGN). 
Neurons from these two layers project to separate patches or stripes within layer 
4 of the visual cortex (VI). Binocular regions (receiving input from both eyes) are 
depicted at the borders between the eye-specific patches. The cortex is depicted in 
cross-section, so that layers 1-3 are above and layers 5-6 below the LGN-recipient 
layer 4. Reprinted by permission from [42]. © 1989 by the AAAS. 

the animal learns from its experience. This self-organization, the brain's 
reshaping of itself through its own activity (reviewed in [7, 14,39, 51]), has 
long fascinated neuroscientists and modelers. 

The classic example of activity-dependent neural development is the for­
mation of ocular dominance columns in the cat or monkey primary visual 
cortex (reviewed in [44]). The cerebral cortex is the uniquely mammalian 
part of the brain. It is thought to form the complex, associative represen­
tations that characterize mammalian and human intelligence. The primary 
visual cortex (VI) is the first cortical area to receive visual information. It 
receives signals from the lateral geniculate nucleus of the thalamus (LGN), 
which in turn receives input from the retinas of the two eyes (Fig. 2.1). 

To describe ocular dominance columns, several terms must be defined. 
First, the receptive field of a cortical cell refers to the area on the retinas in 
which appropriate light stimulation evokes a response in the cell, and also 
to the pattern of light stimulation that evokes such a response. Second, 
a column is defined as follows. VI extends many millimeters in each of 
two, "horizontal" dimensions. Receptive field positions vary continuously 
along these dimensions, forming a retinotopic map, a continuous map of the 
visual world. In the third, "vertical" dimension, the cortex is about 2 mm in 
depth and consists of six layers. Receptive field positions do not significantly 
vary through this depth. Such organization, in which cortical properties are 
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1 mm 

Fig. 2.2. Ocular dominance columns from cat VI. A horizontal cut through the 
layer 4 of VI is shown. Terminals serving a single eye are labeled white. Dark 
regions at the edges are out of the plane containing LGN terminals. Region shown 
is 5.3 x 7.9 mm. Photograph generously supplied by Dr. Y. Rata. 

invariant through the vertical depth of cortex but vary horizontally, is called 
columnar organization and is a basic feature of the cerebral cortex. 

Third, ocular dominance must be defined. Cells in the LGN are monoc­
ular, responding exclusively to stimulation of a single eye (Fig. 2.1) . LGN 
cells project to layer 4 of VI, where they terminate in alternating stripes 
or patches of terminals representing a single eye (Figs. 2.1 and 2.2). Most 
or, in some species, alllayer-4 VI cells are monocular. Cells in other layers 
of VI respond best to the eye that dominates layer-4 responses at that 
horizontal location. Thus, VI cells can be characterized by their ocular 
dominance, or eye preference. The stripes or patches of cortex that are 
dominated throughout the cortical depth by a single eye are known as 
ocular dominance columns. 

The segregated pattern of termination of the LGN inputs to VI arises 
early in development. Initially, LGN inputs project to layer 4 of VI in an 
overlapping manner, without apparent distinction by eye represented. The 
terminal arbors of individual LGN inputs extend horizontally in layer 4 
for distances as large as 2 mm (for comparison, a typical spacing between 
cortical cells is perhaps 20 JLm). Subsequently, beginning either prenatally 
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or shortly after birth, depending on the species, the inputs representing 
each eye become horizontally confined to the alternating, approximately 
I/2-mm wide ocular dominance patches. 

This segregation results from an activity-dependent competition between 
the geniculate terminals serving the two eyes (see discussion in [44]). The 
signal indicating that different terminals represent the same eye appears to 
be the correlations in their neural activities [54]. These correlations exist 
due both to spontaneous activity, which is locally correlated within each 
retina [36, 37, 38, 64], and to visually-induced activity, which correlates 
the activities of retinotopically nearby neurons within each eye and, to a 
lesser extent, between the eyes [26]. The segregation process is competitive. 
If one eye is caused to have less activity than the other during a critical 
period in which the columns are forming, the more active eye takes over 
most of the cortical territory [25, 52, 60]; but the eye with reduced activity 
suffers no loss of projection strength in retinotopic regions in which it lacks 
competition from the other eye [15, 16]. In summary, ocular dominance 
column formation is a simple system in which correlated patterns of neural 
activity sculpt the patterns of neural connectivity. 

Orientation columns are another striking feature of visual cortical orga­
nization. Most VI cells are orientation-selective, responding selectively to 
light/dark edges over a narrow range of orientations. The preferred orienta­
tion of cortical cells varies regularly and periodically across the horizontal 
dimension of the cortex and i3 invariant in the vertical dimension. The 
maturation of orientation selectivity is activity-dependent (e.g., [6, 11]). 
However, it has not yet been possible to test whether the initial develop­
ment of orientation selectivity is activity-dependent. This is because some 
orientation selectivity already exists at the earliest developmental times at 
which visual cortical responses can be recorded [1,4,6,20, 61], and it has 
not been possible to block visual system activity immediately before this 
time. Nonetheless, it has long been a popular notion that the initial devel­
opment of orientation selectivity, like that of ocular dominance, may occur 
through a process of activity-dependent synaptic competition. 

The inputs from LGN to VI serving each eye are of two types: ON-center 
and OFF-center. Both kinds of cells have circularly symmetric, orientation­
insensitive receptive fields and respond to contrast rather than uniform 
luminance. ON-center cells respond to light against a dark background, or 
to light onset; OFF-center cells respond to dark against a light background, 
or to light offset. In the cat, the orientation-selective VI cells in layer 4 are 
simple cells: cells with receptive fields consisting of alternating oriented 
subregions that receive exclusively ON-center or exclusively OFF-center 
input (Fig. 2.3). As shall be discussed, one theory for the development of 
orientation selectivity is that, like ocular dominance, it develops through 
a competition between two input populations: in this case, a competition 
between the ON-center and the OFF-center inputs [41]. 
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Fig. 2.3. Two examples of simple cell receptive fields (RFs). Regions of the 
visual field from which a simple cell receives ON-center (white) or OFF-center 
(dark) input are shown. Note: Ocular dominance columns (Fig. 2.2) represent an 
alternation, across the cortex, in the type of input (left- or right-eye) received by 
different cortical cells; while a simple-cell RF (this figure) represents an alterna­
tion across visual space in the type of input (ON- or OFF-center) received by a 
single cortical cell. 

2.2 Correlation-Based Models 

To understand ocular dominance and orientation column formation, two 
processes must be understood: (1) the development of receptive field struc­
ture: under what conditions do receptive fields become monocular (driv­
able only by a single eye) or orientation-selective? (2) the development of 
periodic cortical maps of receptive field properties: what leads ocular dom­
inance or preferred orientation to vary periodically across the horizontal 
dimensions of the cortex, and what determines the periodic length scales of 
these maps? Typically, the problem is simplified by consideration of a two­
dimensional model cortex, ignoring the third dimension in which properties 
such as ocular dominance and orientation are invariant. 

One approach to addressing these problems is to begin with a hypothe­
sized mechanism of synaptic plasticity, and to study the outcome of cortical 
development under such a mechanism. Most commonly, theorists have con­
sidered a Hebbian synapse: a synapse whose strength is increased when pre­
and postsynaptic firings are correlated, and possibly decreased when they 
are anticorrelated. Other mechanisms, such as activity-dependent release 
and uptake of a diffusible modification factor, can lead to similar dynamics 
[42], in which synaptic plasticity depends on the correlations among the 
activities of the competing inputs. Models based on such mechanisms are 
referred to as correlation-based models [39]. 
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2.2.1 THE VON DER MALSBURG MODEL OF VI 

DEVELOPMENT 

Von der Malsburg [57, 59J first formulated a correlation-based model for the 
development of visual cortical receptive fields and maps. His model had two 
basic elements. First, synapses of LGN inputs onto cortical neurons were 
modified by a Hebbian rule that is competitive, so that some synapses were 
strengthened only at the expense of others. He enforced the competition 
by holding constant the total strength of the synapses converging on each 
cortical cell (conservation rule). Second, the cortical cells tended to be 
activated in clusters, due to intrinsic cortical connectivity, e.g., short-range 
horizontal excitatory connections and longer range horizontal inhibitory 
connections. 

The conservation rule leads to competition among the inputs to a single 
target cell. Inputs that tend to be coactivated - that is, that have cor­
related activities - are mutually reinforcing, working together to activate 
the postsynaptic cells and thus to strengthen their own synapses. Differ­
ent patterns that are mutually un- or anticorrelated compete, since the 
strengthening of some synapses means the weakening of others. Cortical 
cells eventually develop receptive fields that are responsive to a correlated 
pattern of inputs. 

The clustered cortical activity patterns lead to competition between the 
different groups of cortical cells. Each input pattern comes to be associated 
with a cortical cluster of activity. Overlapping cortical clusters contain 
many coactivated cortical cells, and thus become responsive to overlap­
ping, correlated input patterns. Adjacent, nonoverlapping clusters contain 
many anticorrelated cortical cells, and thus become responsive to un- or 
anticorrelated input patterns. Thus, over distances on the scale of an ac­
tivity cluster, cortical cells will have similar response properties; while, on 
the scale of the distance between nonoverlapping clusters, cortical cells will 
prefer un- or anticorrelated input patterns. This combination of local con­
tinuity and larger scale heterogeneity leads to continuous, periodic cortical 
maps of receptive field properties. 

In computer simulations, this model was applied to the development of 
orientation columns [57J and ocular dominance columns [59J. For orien­
tation columns, inputs were activated in oriented patterns of all possible 
orientations. Individual cortical cells then developed selective responses, 
preferring one such oriented pattern, with nearby cortical cells preferring 
nearby orientations. For ocular dominance columns, inputs were activated 
in monocular patterns consisting of a localized set of inputs from a single 
eye. Individual cortical cells came to be driven exclusively by a single eye, 
and clusters of cortical cells came to be driven by the same eye. The final 
cortical pattern consisted of alternating stripes of cortical cells preferring 
a single eye, with the width of a stripe approximately set by the diameter 
of an intrinsic cluster of cortical activity. 
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In summary, a competitive Hebbian rule leads individual receptive fields 
to become selective for a correlated pattern of inputs. Combined with the 
idea that the cortex is activated in intrinsic clusters, this suggests an origin 
for cortical maps: coactivated cells in a cortical cluster tend to become 
selective for similar, coactivated patterns of inputs. These basic ideas are 
used in most subsequent models. 

2.2.2 MATHEMATICAL FORMULATION 

A typical correlation-based model is mathematically formulated as follows 
[57, 27, 40, 42]. Let x, y, . .. represent retinotopic positions in VI, and let 
0:, {3, ... represent retinotopic positions in the LGN. Let SI-'(x,o:) be the 
synaptic strength of the connection from 0: to x of the LGN projection 
of type j1., where j1. may signify left-eye, right-eye, ON-center, OFF-center, 
etc. Let B(x, y) represent the synaptic strength and sign of connection 
from the cortical cell at y to that at x. For simplicity, B(x, y) is assumed 
to take different signs for a fixed y as x varies, but, alternatively, sepa­
rate excitatory-projecting and inhibitory-projecting cortical neurons may 
be used. Let a(x) and al-'(o:) represent the activity of a cortical or LGN 
cell, respectively. 

The activity a(x) of a cortical neuron is assumed to depend on a linear 
combination of its inputs: 

a(x) = II (L SP-(x, o:)al-' (0:) + L B(x, y)a(y)) . (2.1) 
P-,Q y 

Here, II is some monotonic function such as a sigmoid or linear threshold. 
A Hebbian rule for the change in feedforward synapses can be expressed 

as 
ASP-(x,o:) = AP-(x, o:)h [a(x)] fa [al-'(o:)]. (2.2) 

Here, A(x, 0:) is an arbor function that expresses the number of synapses of 
each type from 0: to Xj a minimal form is A(x, 0:) = 1 if there is a connection 
from 0: to x, and A(x, 0:) =0 otherwise. A typical form for the functions h 
and fa is f(a) = (a - (a)), where (a) indicates an average of a over input 
patterns. This yields a covariance rule: synaptic change depends on the 
covariance of postsynaptic and presynaptic activity. 

Next, the Hebbian rule must be made competitive. This can be accom­
plished by conserving the total synaptic strength over the postsynaptic cell 
[57], which in turn may be done either subtractively or multiplicatively 
[43]. The corresponding equations are 

ftSP-(x,o:) = ASI-'(x, 0:) - f(x)A(x, 0:) 

ftSP-(x,o:) = ASP-(x, 0:) -1'(x)SI-'(x, 0:) 

(Subtractive) 

(Multiplicative) , 

(2.3) 

(2.4) 
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where 

I:" a fl.S"(x, a) 
and 'Y(x)= I:' S"( ). ".a X, a 

Either form of constraint ensures that I: .a(djdt)SI-'(x, a) =0. Alternative 
methods have been developed to force Hebbian rules to be competitive [43]. 

Finally, synaptic weights may be limited to a finite range, sminA(x, a) ~ 
SI-'(x,a) ~ smaxA(x, a). Typically, Smin = 0 and Smax is some positive 
constant. 

2.2.3 SEMILINEAR MODELS 

In semilinear models, the 1's in Eqs. (2.1) and (2.2) are chosen to be linear. 
Then, after substituting for a(x) from Eq. (2.1) and averaging over input 
patterns (assuming that all inputs have identical mean activity, and that 
changes in synaptic weights are negligibly small over the averaging time), 
Eq. (2.2) becomes 

fl.SI-'(x, a) = AA(x, a) [L I(x - y) [CI-'''(a - (3) - k2] S"(y, (3) + kll. 
fI.P." 

(2.5) 
Here, l(x - y) is an element of the intracortical interaction matrix 

1== (1 - B)-l = 1 + B + B2 +"', 

where the matrix B is defined in Eq. (2.1). This summarizes intracorti­
cal synaptic influences including contributions via 0, 1, 2, ... synapses. The 
covariance matrix 

CI-'''(a - (3) = (al-'(a) - a) (a"({3) - a» 

expresses the covariation of input activities. The factors A, kl' and k2 are 
constants. Translation invariance has been assumed in both cortex and 
LGN. 

When there are two competing input populations, Eq. (2.5) can be simpli­
fied further by transforming to sum and difference variables: S8 == SI + S2 , 
SD == Sl - S2. Assuming equivalence of the two populations (so that 
C11 = C22, C12 = C21), Eq. (2.5) becomes 

fl.Ss(x, a) = AA(x, a) {L1(X - y) [Cs(a - (3) - 2k2] SS(y,{3) + 2kl} 
fI,P 

(2.6) 
fl.SD(x, a) = AA(x, a) L1(x - y)CD(a - (3)SD(y,(3). (2.7) 

fI.P 
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Here, eS == ell + e12 , eD == ell - e12 . Subtractive renormalization 
[Eq. (2.3)] alters only Eq. (2.6) for SS, by subtraction of 2€(x)A(x - 0:), 
while leaving Eq. (2.7) for SD unaltered. Multiplicative renormalization 
[Eq. (2.4)] alters both Eqs. (2.6) and (2.7), by subtraction of ')'{x)SS(x,o:) 
and ')'(X)SD{X, 0:), respectively. 

2.2.4 How SEMILINEAR MODELS BEHAVE 

Linear equations like (2.6) and (2.7) can be understood by finding the 
eigenvectors or "modes" of the operators on the right side of the equations. 
The eigenvectors are the synaptic weight patterns that grow independently 
and exponentially, each at its own rate. The fastest growing eigenvectors 
typically dominate development and determine basic features of the final 
pattern, although the final pattern ultimately is stabilized by nonlinearities 
such as the limits on the range of synaptic weights or the nonlinearity 
involved in multiplicative renormalization [Eq. (2.4)]. 

We will focus on the behavior of Eq. (2.7) for SD (for analysis of Eq. 
(2.6), see [34, 35]). SD describes the difference in the strength of two com­
peting input populations. Thus, it is the key variable describing the de­
velopment of ocular dominance segregation, or development under an ON­
center/OFF-center competition. In many circumstances, Eq. (2.7) can be 
derived directly from Eqs. (2.1) and (2.2) by linearization about SD == 0 
[40] without need to assume a semilinear model. The condition SD ~ 0 cor­
responds to an initial condition in which the projections of the two input 
types are approximately equal. Thus, study of Eq. (2.7) can lend insight 
into early pattern formation in more general, nonlinear correlation-based 
models. 

Equation (2.7) can be solved simply in the case of full connectivity from 
the LGN to the cortex, when A(x,o:) == 1 for all x and 0:. Then modes 
of SD(x,o:) of the form eikxeila grow exponentially and independently, 
with rates proportional to i(k)CD{l), where i and CD denote the Fourier 
transforms of I and eD, respectively (for a description of the modes as real 
rather than complex functions, see [44]). The wavenumber k determines 
the wavelength 211" /Ikl of an oscillation of SD across cortical cells, while 
the wavenumber 1 determines the wavelength 211"/111 of an oscillation of SD 
across geniculate cells. The fastest growing modes, which will dominate 
early development, are determined by the k and 1 that maximize i(k) and 
CD{l), respectively. The peak of a function's Fourier transform corresponds 
to the cosine wave that best matches the function, and thus represents the 
"principal oscillation" in the function. 

To understand these modes (Fig. 2.4), consider first the set of inputs 
received by a single cortical cell, that is, the shape of the mode for a fixed 
cortical position x. This can be regarded as the receptive field of the corti­
cal cell. Each receptive field oscillates with wavenumber l. This oscillation 
of SD == SI - S2 is an oscillation between receptive field subregions domi-
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nated by 8 1 inputs and subregions dominated by 8 2 inputs. Thus, in ocular 
dominance competition, monocular cells (cells whose entire receptive fields 
are dominated by a single eye) are formed only by modes with 1 = 0 (no 
oscillation). Monocular cells thus dominate development if the peak of the 
Fourier transform of the CD governing left/right competition is at 1 = o. 
Now, instead, consider an ON/OFF competition: 8 1 and 8 2 represent ON­
and OFF-center inputs from a single eye. Then the receptive fields of modes 
with nonzero 1 resemble simple cells: they receive predominantly ON-center 
and predominantly OFF-center inputs from successive, alternating subre­
gions of the visual world. Thus, simple cells can form if the CD governing 
ON/OFF competition has its peak at a nonzero l. 

Now consider the arborizations or projective fields projecting from a sin­
gle geniculate point, that is, the shape of the mode for a fixed geniculate 
position a. These oscillate with wavenumber k. In ocular dominance compe­
tition, this means that left- and right-eye cells from a project to alternating 
patches of the cortex. When monocular cells form (l = 0), these alternat­
ing patches of the cortex are the ocular dominance columns: alternating 
patches of the cortex receiving exclusively left-eye or exclusively right-eye 
input, respectively. Thus, the width of ocular dominance columns - the 
wavelength of alternation between right-eye- and left-eye-dominated cor­
tical cells - is determined by the peak of the Fourier transform of the 
intracortical interaction function I. In ON/OFF competition, with 1 :f 0, 
the identity of the cortical cells receiving the ON-center or OFF-center part 
of the projection varies as a varies, so individual cortical cells receive both 
ON- and OFF-center inputs, but from distinct subregions of the receptive 
field. 

In summary, there is an oscillation within receptive fields, with wavenum­
ber 1 determined by the peak of CD; and an oscillation within arbors, with 
wavenumber k determined by the peak of j (Fig. 2.4). These two oscil­
lations are "knit together" to determine the overall pattern of synaptic 
connectivity. The receptive field oscillation, which matches the receptive 
field to the correlations, quantitatively describes von der Malsburg's find­
ing that individual receptive fields become selective for a correlated pattern 
of inputs. Similarly, the arbor oscillation matches projective fields to the 
intracortical interactions, and thus to the patterns of cortical activity clus­
ters. This quantitatively describes the relationship between activity clusters 
and maps. Note that the factor eikx can be regarded as inducing a phase 
shift, for varying x, in the structure of receptive fields. Thus, cortical cells 
that are nearby on the scale of the arbor oscillation have similar receptive 
fields, while cells 1/2 wavelength apart have opposite receptive fields. 

An alternative viewpoint on the same pattern is obtained by rewriting 
the modes as ei(k+l)xe-il(x-a:). The argument l(x - a) represents the os­
cillation with wavenumber 1 within the receptive field, now expressed in 
coordinates relative to the center of the receptive field rather than in an 
absolute position across the geniculate. The argument (k + l)x represents 
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Fig. 2.4. Schematic of the outcome of semiJinear correlation-based development. 
Top: The correlation function (CD) determines the structure of receptive fields 
(RFs). White RF subregions indicate positive values of SD; dark subregions, 
negative values. When CD does not oscillate, individual cortical cells receive only 
a single type of input, as in ocular dominance segregation. If CD oscillates, there is 
a corresponding oscillation in the type of input received by the individual cortical 
cells, as in simple-cell RFs. Alternative RF structures could form, as in the center­
surround structure shown; but oriented simple-cell-like outcomes predominate 
for reasonable parameters [41]. Simple cells then develop with various numbers 
of subregions and various spatial phases; only a single example, of a cell with two 
subregions and odd spatial symmetry, is pictured. Bottom: The intracortical 
interactions (1) similarly determine the structure of projective fields. Here, solid 
lines indicate positive values of SD, while dotted lines indicate negative values. 
Adapted from [43]. 
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a shift, for varying x, in the phase of the receptive field relative to the 
receptive field center. For the case of ocular dominance, with 1 = 0, this is 
just the shift, with wavenumber k, between left-eye dominance and right­
eye dominance of the cortical cells. For ON/OFF competition with 1 :/: 0, 
this represents a periodic shifting, with movement across the cortex, as to 
which subregions of the receptive field are dominated by ON-center inputs 
and which subregions are dominated by OFF-center inputs. Thus, we can 
view the results as an oscillation within receptive fields, with wavenumber 
1, combined with a shift with cortical position in the spatial phase of recep­
tive fields, this shift occurring with wavenumber k + 1, the vector sum of 
the projective field or arbor oscillation and the receptive field oscillation. 

The competitive, renormalizing terms [Eqs. (2.3) and (2.4)] do not sub­
stantially alter these pictures, except that multiplicative renormalization 
can suppress ocular dominance development in some circumstances [43].2 

These results hold also for localized connectivity (finite arbors), and thus 
generally characterize the behavior of semilinear models [39, 44]. The major 
difference in the case of localized connectivity is that, if k or 1 corresponds 
to a wavelength larger than the diameter of connectivity from or to a single 
cell, then it is equivalent to k = 0 or 1 = 0, respectively. A good approxi­
mation to the leading eigenvectors in the case of finite connectivity is given 
simply by A(x - o:)eikxeila, where k and 1 are determined as above by the 
peaks of l(k) and GD(l) (unpublished results). 

2.2.5 UNDERSTANDING OCULAR DOMINANCE AND 
ORIENTATION COLUMNS WITH SEMILINEAR 

MODELS 

This understanding of semilinear models leads to simple models for the de­
velopment of both ocular dominance columns [42] and orientation columns 
[41] as follows (Fig. 2.4). 

Monocular cells develop through a competition of left- and right-eye 
inputs in a regime in which GD(l) is peaked at 1 = O. The wavelength of 
ocular dominance column alternation then is determined by the peak of 
l(k). 

2Subtractive renormalization [Eq. (2.3)] has no effect on the development of 
SD. Multiplicative renormalization [Eq. (2.4)] lowers the growth rates of all modes 
of both SD and SS by the factor ,),(x), which depends only on SS. The result is 
that, in order for SD to grow at all, its modes must have larger unconstrained 
growth rates than those of SS; that is, the peak of the Fourier transform of CD 
must be larger than that of CS • In practice, this condition is met only if there are 
anticorrelations between S1 and S2, that is, if C12 is significantly negative. When 
this condition is met, then the modes that dominate SD are just as described 
above; they are not altered by the constraint term in Eq. (2.4). These and other 
effects of renormalizing terms are discussed in detail in [43]. 
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Orientation-selective simple cells develop through a competition of ON­
center and OFF-center inputs in a regime in which 6D (l) is peaked at 
1 ¥= O. The mean wavelength of alternation of ON-center and OFF-center 
subregions in the simple cells' receptive fields is determined by the peak of 
6 D (1). This wavelength corresponds to a cell's preferred spatial frequency 
under stimulation by sinusoidal luminance gratings. In individual modes, 
all cortical cells have the same preferred orientation, but their spatial phase 
varies periodically with cortical position. The mixing of such modes of all 
orientations leads to a periodic variation of preferred orientation across 
cortex. The period with which preferred orientations change across cortex 
is more complex to determine [41]. 

This model of ocular dominance column formation is similar to that of 
von der Malsburg [59]. The latter model assumed anticorrelation between 
the two eyes; this was required due to the use of mUltiplicative renormaliza­
tion [Eq. (2.4)]. With subtractive renormalization [Eq. (2.4)], ocular domi­
nance column formation can occur even with partial correlation of the two 
eyes [43]. The model can be compared to experiment, particularly through 
the prediction of the relation between intracortical connectivity and ocular 
dominance column width. 

The model of orientation-selective cell development is quite different 
from that of von der Malsburg [57]. Von der Malsburg postulated that 
oriented input patterns lead to the development of orientation-selective 
cells. The ON/OFF model instead postulates that ON/OFF competition 
results in oriented receptive fields in the absence of oriented input patterns; 
the circular symmetry of the input patterns is spontaneously broken. This 
symmetry-breaking potential of Hebbian development was first discovered 
by Linsker [28]. In all of these models, the continuity and periodic alter­
nation of preferred orientation is due to the intracortical connectivity. The 
ON/OFF model can be compared to experiment most simply by the mea­
surement of CD, to determine whether it has the predicted oscillation. 

2.2.6 RELATED SEMILINEAR MODELS 

Linsker [27, 28, 29] proposed a model that was highly influential in two 
respects. First, he pointed out the potential of Hebbian rules to sponta­
neously break symmetry, yielding orientation-selective cells given approxi­
mately circularly symmetric input patterns. Second, he demonstrated that 
Hebbian rules could lead to segregation within receptive fields, so that a cell 
came to receive purely excitatory or purely inhibitory input in alternating 
subregions of the receptive field. This model was thoroughly analyzed in 
[34,35]. 

Linsker used a semilinear model with a single input type that could 
have positive or negative synaptic strengths (Smin = -smax). He largely 
restricted study to the case of a single postsynaptic cell. Because the equa­
tion for a single input type and a single postsynaptic cell [Eq. (2.5), with 
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I(x - y) = 8(x - y)J is circularly symmetric,3 its eigenfunctions also are 
eigenfunctions of the rotation operator. Thus, the eigenfunctions can be 
written in polar coordinates (r, 0) as cos(nO)fnj(r) and sin(nO)fnj(r), where 
fnj(r) is a radial function and nand j are integers indexing the eigenfunc­
tions. In quantum mechanics, atomic orbitals are named Nx, where N is 
a number representing one plus the total number of angular and radial 
nodes, and x is a letter denoting the number of angular nodes (s,p,d,f,g, ... 
corresponding to n=0,1,2,3,4, ... angular nodes). Thus, Is is a function with 
zero ·nodes, 2s has one node that is radial, 2p has one node that is angu­
lar, 3p has two nodes (one radial, one angular), etc. This naming scheme 
can be applied to any rotationally symmetric system, and in particular can 
be applied to the eigenfunctions of Linsker's system [34, 35], a fact which 
physicists have found amusing. The nature of these eigenfunctions, their 
dependence on parameters, and their role in determining the outcomes 
Linsker observed in simulations are described in [34, 35]. 

For our present purposes, the essential results of this analysis are as 
follows. Two factors underlay Linsker's results. One factor was that oscil­
lations in a correlation function can induce oscillations in a receptive field, 
as was described above. The other factor was a constraint in the model 
fixing the percentage of positive or negative synapses received by a cell; 
this forced an alternation of positive and negative subregions even when 
the correlation function did not oscillate. These two causes were not disen­
tangled in Linsker's simulations, but only the first appears likely to be of 
biological relevance. 

Tanaka [45, 56J has independently formulated models of ocular domi­
nance and orientation columns that are similar to those described in Sec. 
2.2.5. The major difference is that he works in a regime in which each cor­
tical cell comes to receive only a single LGN input. Tanaka defines cortical 
receptive fields as the convolution of the input arrangement with the in­
tracortical interaction function. This means that a cortical cell's receptive 
field is due to its single input from the LGN plus its input from all other 
cortical cells within reach of the intracortical interaction function. Thus, 
orientation selectivity in this model arises from the breaking of circular 
symmetry in the pattern of inputs to different cortical cells, rather than to 
individual cortical cells. 

2.3 The Problem of Map Structure 

The above models account well for the basic features of the primary visual 
cortex. However, many details of real cortical maps are not replicated by 

3The assumption is made that the arbor and correlation functions depend 
only on distance. 
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these models [9, 12, 63]. One reason may be the simplicity of the model 
of the cortex: the real cortex is three-dimensional rather than two; it has 
cell-specific connectivity rather than connectivity that depends only on dis­
tance; and it has plastic rather than fixed intracortical connections. Another 
reason is that the details of the map structure inherently involve nonlinear­
ities, by which the fastest growing modes interact and compete; whereas 
the semilinear framework only focuses on early pattern formation, in which 
the fastest growing modes emerge and mix randomly without interacting. 

Some simple models that focus on map development rather than re­
ceptive field development strikingly match the map structures observed 
in monkeys [9]. One such model [46] uses the self-organizing feature map 
(SOFM) of Kohonen [24, 48], in which only a single cluster of cortical cells 
is activated in response to a given input pattern. This is an abstraction of 
the idea that the cortex responds in localized activity clusters. The single 
activated cluster is centered on the cell whose weight vector best matches 
the direction of the input activation vector. Hebbian learning then takes 
place on the activated cells, bringing their weight vector closer to the input 
activation vector. The size of an activity cluster is gradually decreased as 
the mapping develops; this is akin to annealing, helping to ensure a final 
mapping that is optimal on both coarse and fine scales. 

Except for the restriction to a single activity cluster and the gradual 
decrease in cluster size, the SOFM is much like the correlation-based mod­
els. However, an abstract representation of the input is generally used. In 
correlation-based models, the input space may have thousands of dimen­
sions, one for each input cell. In the SOFM model of the visual cortex, 
the input space instead has five dimensions: two represent retinotopic posi­
tion, and one represents each of ocular dominance, orientation selectivity, 
and preferred orientation. Each cortical cell receives five "synapses," cor­
responding to these five "inputs." Assumptions are made 88 to the relative 
"size" of, or variance of the input ensemble along, each dimension. There 
is no obvious biological interpretation for this comparison between dimen­
sions. Under the assumptions that the ocular dominance and orientation 
dimensions are "short" compared to the retinotopic dimensions, and that 
only one input point is activated at a time, Hebbian learning can lead to 
maps of orientation and ocular dominance that are, in detail, remarkably 
like those seen in macaque monkeys [9, 46]. 

The SOFM, and other models based on the "elastic net" algorithm [8,13], 
lead to locally continuous mappings in which a constant distance across the 
cortex corresponds to a roughly constant distance in the reduced "input 
space." This means that, when one input feature is changing rapidly across 
the cortex, the others are changing slowly. Thus, the models predict that 
orientation changes rapidly where ocular dominance changes slowly, and 
vice versa. It may be this feature that is key to replicating the details 
of macaque orientation and ocular dominance maps. A model that forces 
such a relationship to develop between ocular dominance and orientation, 
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while assuring periodic representations of each, also gives a good match to 
primate visual maps [55J. 

The SOFM also replicates aspects of the retinotopic maps seen in higher 
areas of the cat visual cortex [62J. For these studies, the input and output 
spaces are each taken to be two-dimensional, representing retinotopic posi­
tions. The input space is taken to be a half-circle, representing a hemiretina, 
and the shape of the output space is varied. When this shape is long and 
narrow, as in cat cortical areas 18 and 19, the retinotopic map developed by 
the SOFM has a characteristic pattern of discontinuities closely resembling 
those observed experimentally in those areas [62]. The SOFM achieves maps 
in which nearby points in the output space correspond to nearby points in 
the input space, while each area of the input space receives approximately 
equal representation provided each is equally activated ([48]; see further 
discussion of the SOFM below). The success of the SOFM models ofretino­
topic maps suggests that these are constraints that should be satisfied by 
any model of cortical maps. One would like to determine more precisely 
the constraints on a retinotopic mapping, embodied by the SOFM, that 
are sufficient to replicate these results. 

It recently has been reported that input correlations can alter the spacing 
of ocular dominance columns in the cat visual cortex by perhaps 20-30% 
[32]. A smaller ocular dominance column spacing develops when the activi­
ties of the two eyes are correlated by normal vision than when the two eyes' 
activities are decorrelated (decorrelation is achieved by inducing divergent 
strabismus, which causes the two eyes to see different parts of the visual 
world). This effect was anticipated theoretically by Goodhill [12], who ar­
gued essentially that correlation of the activities of the two eyes brings 
them "closer together," and so the two eyes should be brought closer to­
gether in their cortical representation by a reduction of the column size. 
This effect also could have been anticipated by the SOFM models of oc­
ular dominance, because decorrelation corresponds to an increase in the 
variance of ocular dominance and thus an increase in the "size" of the oc­
ular dominance dimension, which results in increased column size [48J. In 
semiIinear models, in contrast, the column width does not appear to be 
significantly affected by between-eye correlations. Rather, as the degree of 
between-eye correlation is increased, more binocular cells form at the col­
umn borders, until at some critical level of correlation ocular dominance 
segregation no longer occurs (unpublished results). That is, the two eyes are 
brought "closer together" through alteration of the receptive fields rather 
than through alteration of the map. One can anticipate several biological 
mechanisms that might be added to instead yield a reduction in the column 
size, such as nonlinearities that discourage formation of binocular cells, or 
nonlinearities in cortical activation that cause the size of activity clusters 
to depend on the correlations of the inputs. 

Finally, it recently has been noted that cat orientation maps are signifi­
cantly smoother than could be achieved by simple linear considerations [63]. 
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The analysis in [63] suggests that these maps could result, mathematically, 
from a local "diffusion" of preferred orientations. It will be interesting to 
develop a biologically interpretable model of such a process. 

2.4 The Computational Significance of 
Correlation-Based Rules 

2.4.1 EFFICIENT REPRESENTATION OF INFORMATION 

A simple correlation-based rule for a single postsynaptic cell can, if prop­
erly designed, lead to the development of a receptive field that corresponds 
to the principal component of the input data (that is, to the principal 
eigenvector of the covariance matrix of the inputs to the cell) [30, 43, 47]. 
This receptive field in turn maximizes the variance of the postsynaptic 
cell's activity, given the ensemble of input patterns. It has been argued 
that correlation-based rules thus maximize the information carried in the 
postsynaptic cell's activity about the input patterns [30]. Intuitively, by 
varying as much as possible in its response to different inputs, the post­
synaptic cell draws the greatest possible distinction between the different 
input patterns. 

More generally, a number of closely related (and in many circumstances 
identical) computational functions have been proposed for brain areas near 
the sensory periphery. These include maximization of information about 
the inputs [30], minimization of redundancy or correlation in the activities 
of output cells [3], statistical independence of the output activities [3], or 
encoding of the input information as compactly as possible (for example, 
requiring as little dynamic range as possible per neuron) [2]. These func­
tions all involve representing the input information in an efficient way, in 
the sense of information theory. These measures of efficiency take into ac­
count the statistics of the input ensemble but disregard the "semantics," 
the meaning or survival value to the animal, of the inputs. 

The interpretation that the function of a correlation-based rule is to 
yield such an efficient representation is inviting, but it carries two ma­
jor problems. First, the principal component representation achieved by 
correlation-based rules is optimally efficient only for a Gaussian distribu­
tion of input patterns, or, in other words, it reflects only the second-order 
or two-point statistics (the covariance) of the input data. It is possible 
that a great deal of information may reside in higher order statistics, but 
a correlation-based rule as conceived above will ignore this information. 
Intrator has suggested that a variant of standard Hebbian rules can in­
stead maximize a third-order statistic of the output activity, and argues 
that this may be a better statistic for distinguishing among the elements 
of real-world ensembles [22, 23]. While one statistic or the other may be 
best for characterizing a given set of data, both approaches can suffer from 
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the limitation that they are maximizing one particular statistic rather than 
maximizing some measure of efficiency. 

Second, this interpretation applies only to a single, isolated postsynaptic 
cell. Multiple cells viewing the same input ensemble will extract the same 
information from it under a given correlation-based rule. This does not 
add new information about the input, but only redundantly repeats the 
same information. Thus, although a single cell may have a receptive field 
that maximizes the information it could carry about the input ensemble, 
a group of such cells generally will not improve much on the performance 
of a single cell and will not carry the maximal possible information about 
the input ensemble.4 

One way out of this dilemma is to introduce couplings between the post­
synaptic cells that force them to learn independent parts of the input 
ensemble. Unfortunately, excitatory couplings tend to produce correlated 
cells, while inhibitory couplings produce anticorrelated cells. The ostensi­
ble goal, however, is to produce uncorrelated cells, cells whose activities 
carry independent information about the input ensemble. Thus, biological 
couplings will not work. A theoretical way out involves using connections 
between the postsynaptic cells that are modified by anti-Hebbian rules: If 
two cells have correlated activities, the connection between them becomes 
more negative; if two cells have anticorrelated activity, the connection be­
tween them becomes more positive. The result is that the cells become 
uncorrelated. Many authors have independently proposed rules that in­
volve such anti-Hebbian learning on lateral connections (e.g., [10, 31, 49]) 
or related ideas [50]. However, no biological sign of anti-Hebbian synaptic 
modification thus far has been observed. 

An alternative way out of this dilemna stems from the observation that 
biological receptive fields are localized. Thus, nearby cells see overlapping 
but not identical sets of inputs. Consider two extreme cases. First, when 
each input cell is connected to a single output cell, receptive fields are com­
pletely localized. In the limit of low noise, the output layer replicates the 
activity of the input layer, so all information is preserved. However, when 
noise is significant, some information is lost by this identity mapping, and 
alternative connectivity schemes may yield greater information about the 
inputs. Second, when there is global connectivity, so that all input cells are 
connected to all output cells, receptive fields are completely delocalized. 
Under a correlation-based rule, each output cell learns the same recep­
tive field. Then, in the low-noise limit, most information is being thrown 

4For simplicity, in this discussion we will ignore noise. Depending on the 
signal-to-noise ratio, one will wish to strike a particular balance between variety 
(carrying more independent components of the input ensemble) and redundancy 
(e.g., see [2, 30)). However, except in the extreme case of high noise, where com­
plete redundancy is called for, multiple components always will be needed to 
maximize the information, given multiple output cells. 
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away - only one dimension of the input pattern is being distinguished. 
However, suppose that this dimension is the most informative dimension 
about the input ensemble. Then, in the high-noise limit, this redundant 
representation of the most information-rich dimension will maximize the 
information carried about the input ensemble. 

Thus, given a correlation-based learning rule, a completely localized rep­
resentation can maximize information in the low-noise limit, while a com­
pletely delocalized representation can maximize information in the high­
noise limit. Intermediate levels of localization should be appropriate for 
intermediate signal-to-noise ratios (this has recently been demonstrated 
quantitatively [21]). It seems likely that biology, rather than designing an 
anti-Hebbian learning rule, has used its own correlation-based rules and 
has made use of its natural tendency to form partially localized receptive 
fields in order to ensure efficiency of representation. 

2.4.2 SELF-ORGANIZING MAPS AND 

ASSOCIATIVE MEMORIES 

The above ideas about efficiency consider only the summed information 
in the responses of the postsynaptic cells, without regard for location 
or connectivity. Alternative ideas about the computational significance of 
correlation-based rules focus on the spatial arrangement of postsynaptic 
response features and the connectivity between the postsynaptic cells. 

One such set of ideas stem from the study of the self-organizing feature 
map (SOFM) of Kohonen [24, 48] and of related dimension-reducing map­
pings [8]. As was previously described, the SOFM corresponds to a Hebbian 
rule with a nonlinear lateral intracortical interaction, such that each input 
pattern leads to a single, localized cluster of cortical activity. The SOFM 
and related algorithms lead to a mapping that matches the topology and 
geometry of the output space to that of the input space, despite a possible 
dimensional and/or shape mismatch between the two [8, 24, 48]. That is, 
nearby points in the output space correspond via the mapping to nearby 
points in the input space, and input patterns that occur more often develop 
a larger representation than those that occur less often. 

A number of possible functions have been assigned to, such mappings. 
One is the minimization of wiring length, assuming that cortical points 
representing "nearby" input patterns need to be connected to one another 
[8]. Another is to represent the input data in a compressed form while 
minimizing reconstruction error [33, 48]. A specific form of the latter idea 
is as follows. Suppose that there is noise in the output layer that is distance­
dependent, so that the probability of a response being centered at a given 
output point falls off with its distance from the point that is "correct" for 
that input. Suppose also that there is a metric on the input space, and 
that the error in mistaking one input pattern for another is assigned as the 
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distance between the two patterns. Then the SOFM can be interpreted, 
approximately, as achieving the input-output mapping that minimizes the 
average error in reconstructing the input pattern from the output responses 
[33]. 

The major problem in applying these ideas to biology is the difficulty 
in assigning biological meaning to the topology and geometry of the non­
retinotopic dimensions of the input space. Given an ensemble of visual 
input patterns on the retina, for example, how large is the corresponding 
ocular dominance or orientation dimension relative to the retinotopic di­
mensions? Without a clear prescription for answering this question, it is 
difficult to make biological predictions from these ideas. Nonetheless, the 
computational functions of self-organizing maps, their close connection to 
correlation-based models, and their ability to replicate many features of 
cortical maps are intriguing. 

Another well-known set of ideas concerns the role of correlation-based 
rules in establishing an associative memory. Suppose one wishes to learn a 
set of N input-output pairs, (uG, vG), where uG and vG are the ath input 
and output vectors, respectively. Let vG = MuG for some synaptic matrix 
M. If the input patterns are orthonormal, uG . u b = 8Gb, then the input­
output association is achieved by setting M = EG VG(UG)T (e.g., [24]). This 
relation will be learned by a Hebbian rule, (d/dt)Mij = -Mij/N + ViUj, 

provided there is a "teacher" to clamp the output to vG whenever uG is 
presented. A fully connected network with activity states v similarly will 
develop the activity states, or "memories," vG, as stable attracting states 
if the connection matrix between the cells is determined by the Hebbian 
prescription M = EG vG(vG)T (e.g., [18, 19]). Again, to learn a specific 
set of memories, a "teacher" is required to clamp the network into the 
appropriate activity states during learning. Given simple nonlinearities in 
neuronal activation, the stored memories need not be orthogonal to one 
another, provided the memories are randomly chosen (uncorrelated) and 
their number is sufficiently small relative to the number of cells (e.g., [17]). 
It is of biological interest to explore how associative properties can develop 
through correlation-based rules in the absence of a teacher as well as in the 
presence of correlated input patterns (for which, see [17]). 

2.5 Open Questions 

This brief review can only point to a small sample of the rich literature on 
this topic. Among the many open questions in the field are: How can bio­
logically interpretable models replicate the details of cortical maps? Might 
orientation selectivity arise from early oriented wave patterns of retinal ac­
tivity [38, 64] or other mechanisms, rather than through ON/OFF competi­
tion? Might the initial development of orientation selectivity occur through 
the patterning of intracortical connections, rather than through the pat-
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terning of LGN connections to the cortex?5 How might intracortical plas­
ticity affect receptive field and map development [53]? How might input 
correlations affect column size [12]? How will development be altered by 
the incorporation of more realistic cortical connectivity, and more realistic, 
nonlinear learning rules? For example, might input correlations help de­
termine the self-organization of plastic intracortical connections or the size 
of nonlinearly determined cortical activity clusters, each of which in turn 
would shape the pattern of input synapses including column size? How can 
we characterize the computational function of the correlation-based rules 
used biologically? These and other questions are likely to be answered in 
the coming years. 
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